ADAPTIVE K-MEANS ALGORITHM FOR OVERLAPPED GRAPH CLUSTERING
نویسندگان
چکیده
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملAdaptive K-Means Clustering
Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent...
متن کاملThe Overlapped K-hop (OK) Clustering Algorithm
Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Clustering algorithms are mostly heuristic in nature and aim at generating the minimum number of disjoint clusters. In this report, we formulate the overlapping multi-hop clustering problem as an extension to the k-dominating set problem. Then we propose a fast, randomized, distribute...
متن کاملAn Adaptive K-means Clustering Algorithm for Breast Image Segmentation
Breast cancer is one of the major causes of death among women. Small clusters of micro calcifications appearing as collection of white spots on mammograms show an early warning of breast cancer. Early detection performed on X-ray mammography is the key to improve breast cancer diagnosis. In order to increase radiologist’s diagnostic performance, several computer-aided diagnosis (CAD) schemes ha...
متن کاملGraph based k-means clustering
An original approach to cluster multi-component data sets is proposed that includes an estimation of the number of clusters. Using Prim’s algorithm to construct a minimal spanning tree (MST) we show that, under the assumption that the vertices are approximately distributed according to a spatial homogeneous Poisson process, the number of clusters can be accurately estimated by thresholding the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Neural Systems
سال: 2012
ISSN: 0129-0657,1793-6462
DOI: 10.1142/s0129065712500189